

FDC1 12-42V DC

COMMUNICATION PROTOCOL v2

HARDWARE

Wiring:

RJ-25 phone

connector

1 RxD (FDC1 input / external controller output)

2 IN1 input

3 GND

4 +5V / 25mA (Slave mode) / Led output (other modes)

5 IN2 input

6 TxD (FDC1 output / external controller input)

TTL levels (0-5V)

Universal Asynchronous Receiver/Transmitter (UART)

 1200 baud

 1 start bit (0V)

 8 bits of data (0V=0 / 5V=1)

 no parity

 1 stop bit (5V)

OUTPUT

Every 0’5 s, one of these 6-byte sequences is sent:

If the motor is OFF If the motor is ON

27 1 27

76 2 76

0 3 SP1 = (motor_speed) / 256

A=alarm code 4 SP2 = (motor_speed) mod 256

TR1=(time_remaining*122) / 256 5 INT1 = (measured_current*3160) / 256

TR2=(time_remaining*122) mod 256 6 INT2 = (measured_current*3160) mod 256

checksum_odd 7 checksum_odd

checksum_even 8 checksum_even

- Since the motor speed will be greater than 256 whenever it’s ON, the 3
rd

 byte helps

determine which of the two sequences is sent.

- Alarm codes:

16 Battery out of limits

32…47 Fan output overload

48…63 Motor failed to start

64…79 Motor overload

80 Overtemperature

160…175 Fan output overload (end of retries)

176…191 Motor failed to start (end of retries)

192…207 Motor overload (end of retries)

208 Overtemperature (end of retries)

240…255 Internal error

- To obtain the time in seconds remaining until the next motor start-up:

(TR1 * 256 + TR2) / 122

- To obtain the actual motor speed in rpm:

SP1 * 256 + SP2

- To obtain the measured consumption of the motor in amperes:

(INT1 * 256 + INT2) / 3160

- The checksum values are obtained from the other bytes by means of a xor funcion:

checksum_odd = byte_1 XOR byte_3 XOR byte_5

checksum_even = byte_2 XOR byte_4 XOR byte_6

INPUT

Programming mode + parameters

To program the device, one of the next 22-byte sequences must be received.

 Standard battery system Special battery system

1 72 72

2 80 80

3 minimum_speed / 256 minimum_speed / 256

4 minimum_speed mod 256 minimum_speed mod 256

5 maximum_speed / 256 maximum_speed / 256

6 maximum_speed mod 256 maximum_speed mod 256

7 0 0

8 mode (bit 5=0) mode (bit 5=1)

9 (1187 * cut_out_12V) / 256 (1187 * cut_out_special) / 256

10 (1187 * cut_out_12V) mod 256 (1187 * cut_out_special) mod 256

11 (1187 * cut_in_12V) / 256 (1187 * cut_in_special) / 256

12 (1187 * cut_in_12V) mod 256 (1187 * cut_in_special) mod 256

13 (1187 * cut_out_24V) / 256 255

14 (1187 * cut_out_24V) mod 256 255

15 (1187 * cut_in_24V) / 256 255

16 (1187 * cut_in_24V) mod 256 255

17 (1187 * cut_out_42V) / 256 255

18 (1187 * cut_out_42V) mod 256 255

19 (1187 * cut_in_42V) / 256 (1187 * nominal_voltage) / 256

20 (1187 * cut_in_42V) mod 256 (1187 * nominal_voltage) mod 256

21 checksum_odd checksum_odd

22 checksum_even checksum_even

- The whole sequence must be received within 1 second. Otherwise, the command will be

ignored.

- These parameters are stored in non volatile memory.

- The speeds are expressed in rpm and should be between 1500 and 3500 rpm.

- The mode byte is the sum of the next members:

0: no

thermostat

delay

+

0: internal battery

limits

+

2: external thermostat = SLAVE MODE

0: normal (speed

selected using IN1 &

IN2)

+

0: normal

16: external battery

limits (using in1 &

in2)

4: Smart Speed (speed

selected using IN1 &

IN2)

128: 3

minutes delay

8: Sleep mode (speed

selected using IN2) 3: speed

proportional to

battery voltage

32: special battery

system (from 9 to

46V)

12: Energy Saving

Sleep mode (speed

selected using IN2)

- The cut-out and cut-in levels for each of the battery systems (12V, 24V, 42V or special)

are expressed in volts and must fulfill the next requirements:

STANDARD:

cut_out < cut-in for each pair of values

cut_out_12V > 9V

cut_in_12V < 17V

cut_out_24V > 17V

cut_in_24V < 33V

cut_out_42V > 33V

cut_in_42V < 46V

SPECIAL:

cut_out_special < cut_in_special < nominal_voltage

cut_out_special > 9V

nominal_voltage < 46V

 Otherwise, operation is not guaranteed.

- The checksum values are obtained from the other bytes by means of a xor funcion:

checksum_odd = byte_1 XOR byte_3 XOR byte_5 XOR … XOR byte_19

checksum_even = byte_2 XOR byte_4 XOR byte_6 XOR … XOR byte_20

- If the checksum values are not correct, the parameters will be ignored by the device.

- When the parameters are acknowledged and saved to the memory, the device will return

the same sequence of bytes to the programmer, except for the first two bytes (27 and 80).

Programming speed

To change the programmed speed, the next 8-byte sequence must be received.

1 72

2 115

3 minimum_speed / 256

4 minimum_speed mod 256

5 maximum_speed / 256

6 maximum_speed mod 256

7 85

8 checksum

- The checksum value is obtained from the other bytes by means of a xor funcion:

checksum = byte_1 XOR byte_2 XOR byte_3 XOR … XOR byte_7

- The speeds are expressed in rpm and should be within 1500 and 3500 rpm.

- The speeds programmed this way are not stored in non volatile memory, so these values

will be reset when the power supply is cut off.

- SLAVE MODE: In this mode, the maximum speed is irrelevant, because the minimum

speed will become the actual speed.

- SLAVE MODE: In order to stop the motor, a minimum speed equal to 0 should be

programmed. The thermostat input (T+) should remain connected to T-.

- SLAVE MODE: The speed must be refreshed to check that the communication is OK,

so the motor will stop if no speed is received within 60s.

5/11/2010

