

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 1 of 28

Interfacing with VE.Bus products – MK2 Protocol

Table of contents

Interfacing with VE.Bus products – MK2 Protocol .. 1

Table of contents ... 1

1 Introduction ... 2

2 Supported devices ... 2

3 The MK2 interface .. 2

3.1 Communication parameters.. 2

3.2 Message format .. 3

3.3 Response times ... 4

3.4 Software compatibility ... 4

3.5 Jumpers in the MK2 ... 4

3.6 MK2 Powerup sequence... 6

4 LED status ... 6

5 Switch and input current settings .. 7

5.1 Receiving panel frames (0x40) .. 8

6 Requesting special VE.Bus frames ... 10

6.1 Info frames (0x20) .. 10

6.2 MasterMultiLED frame (0x41) .. 12

7 Communicating with a specific device ... 13

7.1 Device addresses .. 13

7.2 Device discovery .. 13

7.3 The ‘W’ command ... 13

7.3.1 CommandSendSoftwareVersion ... 14

7.3.2 CommandGetSetDeviceState .. 14

7.3.3 CommandReadRAMVar... 15

7.3.4 CommandReadSetting .. 16

7.3.5 CommandWriteRAMVar .. 16

7.3.6 CommandWriteSetting ... 16

7.3.7 CommandWriteData ... 16

7.3.8 CommandGetSettingInfo .. 17

7.3.9 CommandGetRAMVarInfo .. 17

7.3.10 Units .. 18

7.3.11 Setting and Variable IDs ... 18

Appendix 1 Simple example of common tasks ... 24

Appendix 2 Annotated example for typical UI ... 25

Appendix 3 Revision history... 28

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 2 of 28

1 Introduction

This document describes the MK2 protocol, used to communicate with VE.Bus

products. Note that implementing the MK2 protocol is a task which is not to be

underestimated. It is a complicated protocol. There are other alternatives, with

ModbusTCP being the most popular one. See our whitepaper ‘Data communication with

Victron Energy products’ for more information:

http://www.victronenergy.com/support-and-downloads/whitepapers/

For communicating with older (VE 9-bit RS485) products, refer to “VE - Interfacing

with the Phoenix Product Range”.

2 Supported devices

The following Victron Energy products are equipped with VE.Bus connections:

• Victron Energy Phoenix Multi (Inverter/Charger)

• Victron Energy Phoenix Inverter

• Victron Energy Quattro

VE.Bus product version numbers are of the format AA BB CCC, where AA is the

product type, BB is the model, and CCC is the version. The information in this

document is intended for use with devices with software version xxyy111 or higher.

(xx= 19,20 26 or 27)

Please make sure that your MK2 contains the latest firmware. This is automatically

checked when connecting to a Multi/Quattro with latest version of VEConfigure3.

(See also Software compatibility)

3 The MK2 interface

Communication with VE.Bus devices is achieved by using an MK2 interface (either

MK2.2 or MK2 USB). The MK2 provides a galvanically isolated serial connection.

Because the functionality of the Multis/Quattros is continuously expanding, it might be

possible that the interface behavior of newer releases of Multis/Quattros is different in

some aspects. An update of the MK2 firmware might be required to be able to

communicate with newer Multis/Quattros. Always use the latest MK2 firmware

available. Update it by connecting it to the latest version of VEConfigure3.

3.1 Communication parameters

Baud rate: 2400

Parity: None

Data bits: 8

Stop bits: 1

Furthermore, when using a MK2.2 (this is the serial (non-USB) type), the DTR signal

(pin 4 on the DB9 connector) must be driven high to provide power to the RS232 side of

the MK2.

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 3 of 28

How to program the DTR is different between used operating systems and hardware.

Please note that most RS232 drivers are inverting so the logic level of the DTR must be

programmed to zero in most cases.

Some 3
rd

 party programs will set the DTR correct when RTS/CTS handshaking is

enabled.

When the DTR level is not correct you will not be able to receive data from the MK2.2!

3.2 Message format

The basic frame format when communicating with the MK2 is:

<Length> 0xFF <Command> <Data0> … <Datan-1> <Checksum>

<Length> is the number of bytes in the frame, excluding the length and checksum bytes.

If the MSB of <Length> is a 1, then this frame has LED status appended (see chapter

3.6 for more information). <Command> indicates the purpose of the frame. The number

and content of the <Data> bytes depends on the value of <Command>. <Checksum> is

computed such that the sum of all bytes in the frame (including the length and

checksum) equals 0.

Please ignore the paragraph below. Update your Mk2 to the latest firmware version (see

Software compatibility).
Zero padding:

If the last byte before <Checksum> is 0xFF, the frame will be interpreted differently by the MK2. To

prevent this, if the last data byte of the frame is 0xFF, the frame must be padded with 0x00 (and <Length>

incremented).

IMPORTANT: Do NOT add a 0x00 when the last byte <>0xFF

Notes:

• Please ignore this note, use latest MK2 frimware version

(see Software compatibility).
If the version of the MK2 is 1130128 or later then zero padding is not required.

Because of backwards compatibility reasons, an MK2 with version 1130128 or later, will allow zero

padding to be used on commands which are supported by previous versions (all commands

described in this document).

New commands, to be added to later versions in future, might not accept the zero padding!

Depending on the firmware version of the MK2, the response can also be padded with 0x00. Even if

the last byte <> 0xFF.

(MK2 versions 1130128 and up do not use zero padding on their respones.)

• The MK2 protocol is little endian. All values that are larger than one byte are sent

LSB first.

• Generally, only the <Command> and <Data> bytes will be discussed.

• To allow future enhancements, reponses can be extended in upcoming VE.Bus

products resulting in extra data (bytes) to be added to responses. We will do our

best to stay backwards compatible so the ‘old’ data (bytes) will still contain the info

as specified in this document.

To prevent problems with future VE.Bus products take care that your code allows

for responses to become longer and that your code does not rely on values of non-

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 4 of 28

documented bits.

Just ignore all non-documented superfluous data (bytes).

3.3 Response times

The response time of the MK2 will vary depending on the command. (For some

commands the response value is known by the MK2 and so a response will be sent

directly. Other commands require communication with one or more units on the

VE.BUS so the response time for these commands will be increased)

We advise to use a timeout value of 500ms. (Note that response times will be much

lower for the majority of the commands.)

This value is suitable for all commands with one exception: The response for ‘F’5 (see

paragraph 6) can take up to 750ms. So one should increase the timeout to a value greater

than 750ms when waiting for that response.

3.4 Software compatibility

When the MK2 is powered up it will send a version frame. Version frames will also be

sent approximately once per second if nothing else is being sent, and can also be

requested with the following command:

Command: ‘V’

Reply: ‘V’ <Version number0> … <Version number3> <Mode>

<Version number> is a 32-bit integer.

<Mode> Specifies the communications protocol in use. If <Mode> is ‘W’, the

target device is communicating using the VE 9-bit RS485 protocol. Any

other value for <Mode> means that the target is a VE.Bus device.

In that case <Mode> contains the address which is currently set in the

MK2 (see paragraph 7.1) If no address is set then <Mode> is ‘B’

The information in this document applies to MK2 versions of 1130125 or later,

communicating in VE.Bus mode.

In new Multi/Quattro versions, communication mechanisms might change. The MK2

firmware will handle these changes for you. So:

It is important to always use the latest MK2 firmware !!

The firmware in an MK2 will be updated to the latest version automatically by

connecting the MK2 to a PC running VE Configure and making a connection to a Multi.

(One should use an up to date version of VE Configure for this. VE Configure is

available as a free download from www.victronenergy.com).

3.5 Jumpers in the MK2

Panel detect (VE.Bus pin 7, jumper J1 in the MK2).

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 5 of 28

This signal must be left floating or tied to GND. Connect this signal to ground to

indicate to the device that a remote panel is connected. The device will not switch on

until receives a command setting it to either on or charger-only.

Standby (VE.Bus pin 6, jumper J2 in the MK2)

This signal must be left floating or tied to GND. Connect this signal to ground to enable

the power of the device when the “Panel detect” signal is low.

Device on/off switching, low power mode.

When the “Panel detect” signal is connected to GND the device will not switch on by

just switching on the front switch. It will only then switch on when it receives a

command to do so. If “Panel detect” is connected to GND and the device is off, the unit

is in a low power mode
a
. The internal power supply is switched off in order to save

energy. The device cannot send or receive commands in this state. To be able to switch

it on one needs to pull the “Stand by” line to GND. This will enable the internal

power supply and make it possible to receive and send commands. The “switch on”

command can be send then and the unit will switch on. When the unit is switched on the

“Stand by” line can be released. The unit itself will prevent the internal power to switch

off. To switch the unit off, just send a command “switch off”. It will switch off and the

internal power supply will be switched off too. (Except when the “Stand by“ line is still

pulled to GND). One could also permanently tie the “Stand by” signal to GND if one

wants to switch the device on and off via the interface. The advantage is that it is less

complicated. The disadvantage is that in “off” mode the device will consume more

power.

a
 To make use of the low power mode with a Multi Compact one must set dipswitch 2 to off.

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 6 of 28

3.6 MK2 Powerup sequence

On power-up, the MK2 will automatically detect if it is connected to a VE.Bus device or

a VE 9-bit RS485 device. It will change the used baudrate and frame-types accordingly.

It does that by listening for VE.Bus frames for a couple of 100 milliseconds. If it does

not receive any, it defaults to VE 9-bit RS485 mode.

In case the MK2 is powered before the VE.Bus device, make sure to do one of the

following:

A) Power cycle the MK2 after the VE.Bus device is powered.

B) Send the MK2 a reset command (0x02 0xFF ‘R’ <checksum>).

Note that this is only important in a non-standard system, where the MK2 is not

powered from the VE.Bus device. When the MK2 is connected on to a Multi with a

UTP cable, everything will be automatically, and this powerup sequence will not require

extra attention or consideration.

4 LED status

The operating state of a VE.Bus system can be determined by requesting the LED

status.

Command: ‘L’

Reply: ‘L’ <LED on> <LED blink> 0x00b

Each bit in <LED on> represents the on/off status of an LED. Each bit in <LED blink>

represents the blinking status of an LED; if the corresponding bit in <LED on> is 0 then

the LED is blinking in anti phase with the others.

Bit number LED

0 Mains

1 Absorption

2 Bulk

3 Float

4 Inverter

5 Overload

6 Low battery

7 Temperature

If the MK2 is unable to determine the LED status, <LED on> and <LED blink> will be

reported as 0x1F.

b
 MK2 versions 1130128 and up do not send this 0x00

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 7 of 28

5 Switch and input current settings

The ‘S’ (state) command can be used to send the panel state (switch position and input

current set point) to the VE.Bus system. Issuing this command will cause the panel state

to be sent to VE.Bus (unless <Flags[4]> is set, see below). The MK2 can also be

configured to automatically send the panel state every ½ second (<Flags[0]>).

There are 2 variants of this command, depending on (<Flags[7]>).

Variant 1: <Flags[7]>=0

Command: ‘S’ <Switch state> <Pot value> <Panel scale> 0x01 <Flags>

Reply: ‘S’

<Switch state> Meaning

1 Charger only

2 Inverter only

3 On

4 Off

The <Panel scale> parameter is used to specify the maximum current the system

should draw (in amps). The <Pot value> parameter can be any value between 0 and

255, and is used to allow the set point to be varied between 0 and <Panel scale> amps.

The input current set point used by the system is determined by the following formula:

256
pointset current Input

><×><
=

scale Panelvalue Pot

There are three exceptions, where this formula is not used:

<Panel scale> Meaning

0 The input current set point will be set as low as possible.

1
The input current set point will be ignored by the system.

255

Variant 2: <Flags[7]>=1

Command: ‘S’ <Switch state> <Lo(Limit)> <Hi(Limit)> 0x01 <Flags>

Reply: ‘S’

The input current limit is in this case equal to Limit/10 Ampere.

<Switch state> is the same as in variant 1.

Making Limit>=0x8000 will result in the input current setpoint being ignored.

Notes (for both variants):

1) If the input current set point exceeds the maximum rating of the equipment, it

will be automatically limited to the maximum. The maximum rating of the

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 8 of 28

equipment can be found by requesting a MasterMultiLED frame (see chapter 6.2

for more information).

2) When Powerassist is enabled there is a minimum value for the input current

limit. This minimum value can be also be found by requesting a

MasterMultiLED frame (see chapter 6.2 for more information). Specifying a

value lower than this minimum limit (with exception of value 0 see next note)

will effectively result in the minimum limit being used.

3) When the input current setpoint is set to zero one of 2 things happen:

a. If Powerassist is enabled the Multi/Quattro will switch to Invert mode.

b. If Powerassist is disabled, the charger will be disabled and the

Multi/Quattro will switch to bypass mode.

<Flags[n]> Meaning

0 Automatically send panel state to VE.Bus every ½ second.

1 Automatically append the LED status to all frames sent from the

MK2 to the PC. If this flag is set, then all frames sent on the PC will

have a LED status frame appended (see LED status above for

details). When a frame has the LED status appended, bit 7 in the

<Length> byte will be set.

2 Reserved (keep 0).

3 Reserved (keep 0).

4 Do not send panel state.

5 Reserved (keep 0).

6 Automatically forward received panel frames (see below).

7 0 = input current limit is send as potvalue and scale

1 = input current limit is send as Amps * 10

5.1 Receiving panel frames (0x40)

If remote panel functionality is provided by another device in the system, the MK2 can

be configured to forward the panel frames from that device, by setting <Flags[6]>.

Note: These frames are VE.Bus frames, not MK2 frames. The general format is the

same, except that VE.Bus frames do not begin with 0xFF.

There are two types of panel frame, standard and extended. The type of frame sent

depends on the panel model, and is indicated by bit 3 of <Panel and switch

information>.

<Data byte> Meaning

Standard Extended

0 <Panel and switch information>

1 <Pot value> <Absolute current

limit> 2 <Panel scale>

<Panel and switch information>

Bit 7 6 5 4 3 2 1 0

Standard <Panel ID> <Frame

format>

<Switch position>

Extended <Generator

selected>

<Switch

position>

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 9 of 28

If <Frame format> is set, then the frame uses the extended format.

For standard format frames, <Switch position>, <Pot value> and <Panel scale>

are interpreted as described above.

For extended format frames, add 1 to <Switch position> to get the standard format

equivalent. <Absolute current limit> is the input current set point, specified in deci-

amps.

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 10 of 28

6 Requesting special VE.Bus frames

The ‘F’ command can be used to request information about the VE.Bus system.

Command: ‘F’ <Frame type>

Reply: The format of the reply varies depending on the value of <Frame type>.

<Frame type> Action Reply format

0 Request DC info. Info frame (DC)

1 Request AC L1 info. Info frame (AC)

2 Request AC L2 info. Info frame (AC)

3 Request AC L3 info. Info frame (AC)

4 Request AC L4 info (rare). Info frame (AC)

5 Request MasterMultiLED frame. MasterMultiLED frame

Note: The responses to the ‘F’ command are VE.Bus frames, not MK2 frames. The

general format is the same, except that VE.Bus frames do not begin with 0xFF.

6.1 Info frames (0x20)

<Data byte> Meaning

DC frame AC frame

0 Reserved <BF factor>

1 <Inverter factor>

2 Reserved

3

4 <Phase info>

5 <DC voltage> <Mains voltage>

6

7 <DC current used by

inverting devices>

<Mains current>

8

9 <Inverter voltage>

10 <DC current

provided by

charging devices>
11 <Inverter current>

12

13 <Inverter period> <Mains period>

The voltage, current and period fields use the same offsets and scales as the equivalent

values requested with ‘W’ commands (see chapter 7.3 for more information).

Additionally, <Mains current> must be multiplied by <BF factor> to get the total

mains current for that phase, and <Inverter current> must be multiplied by

<Inverter factor>c to get the total inverter current for that phase.

Note: The DC current fields are unsigned 24-bit values.

c
 Inverters (not Multis) with software versions xxyy120 up to and including xxyy125, (xx being 19,20,26

or 27) will incorrectly report <Inverter factor> as 0. Updating the device to revision 126 or higher will

fix this.

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 11 of 28

<Phase info> indicates which phase the received frame describes, and in the case of

L1, how many phases are present in the system.

<Phase info> Meaning

0x05 This frame describes L4.

0x06 This frame describes L3.

0x07 This frame describes L2.

0x08 This frame describes L1; there is 1 phase in this system.

0x09 This frame describes L1; there are 2 phases in this system.

0x0A This frame describes L1; there are 3 phases in this system.

0x0B This frame describes L1; there are 4 phases in this system.

0x0C This is a DC info frame.

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 12 of 28

6.2 MasterMultiLED frame (0x41)

<Data byte> Meaning

0 Reserved

1

2

3

4 <AC input configuration>

5 <Minimum input current limit>

6

7 <Maximum input current limit>

8

9 <Actual input current limit>

10

The <* input current limit> fields are in deci-amps.

<AC input configuration> can be further broken down as follows:

<AC input configuration> Meaning

0 <Last active input>

1

2 <Input current overridden by panel>

3 Reserved

4

5

6

7

<Last active input> indicates which of the AC inputs was the last to be used. Note

that this does not necessarily mean that there is currently anything connected to this

input. The first input is input 0.

If <Input current limit overridden by panel> is set, then a remote panel can

override the internal input current limit for this input. If this bit is not set, then the

internal setting will be used even if a remote panel is connected.

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 13 of 28

7 Communicating with a specific device

All commands described so far are for interacting with the entire VE.Bus system. Some

features however, are specific to each device in the system. The ‘W’ command

(described below) is used for communicating with a specific device.

7.1 Device addresses

In a VE.Bus system, there may be more than one target device. In order to communicate

directly with a specific target, you must tell the MK2 the address of the device with

which you wish to communicate. This is done using the ‘A’ (address) command which

has the following format:

Command: ‘A’ <Action> <Address>

Reply: ‘A’ <Action> <Address> 0x00d

Bit 0 of the <Action> parameter determines whether the <Address> parameter should

be read or written. If this bit is a 1 then the address used by the MK2 will be set to the

value of the <Address> field, otherwise the <Address> field is ignored. The reply will

return the address currently in use. The <Action> parameter in the reply will be the

same value specified in the command frame.

When the MK2 starts up, the address will be set to the default value of 0xFF. This is not

a valid address, so must be set before it is possible to send ‘W’ commands (see chapter

7.3), a valid address must be set. Valid address values are between 0x00 and 0x1F.

Attempting to set any other value will cause the MK2 to revert to the default value of

0xFF.

When sending ‘W’ commands that should generate a response, you must wait for the

response before sending another ‘W’ or ‘A’ command, otherwise the response will not

be received.

7.2 Device discovery

In order to set the correct address, you must first determine the address(es) of the target

device(s). To do this, set an address then send any ‘W’ command that will cause the

target to respond. If a response is received, then a valid address is selected, otherwise

there is no device at that address. Begin with address 0, and test each address in turn. If

no reply is received for 3 consecutive addresses, then there are no more devices and it is

not necessary to continue.

7.3 The ‘W’ command

Command: ‘W’ <W frame>

Reply: ‘W’ <W frame0> [<W frame1> [<W frame2>]]

d
 MK2 versions 1130128 and up do not send this 0x00

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 14 of 28

When sending ‘W’ commands, the response from the target device may consist of

multiple <W frame>s. In this case, up to 3 <W frame>s will be packed into one MK2

frame.

The format of a <W frame> is as follows:

<W command> <Info0> <Info1>

Each <W frame> will always be 3 bytes, so the number of frames included in a single

response to a ‘W’ command can be determined from the value of <Length>.

From this point forward, only the contents of the <W frame> part of the command will

be discussed.

Possible ‘W’ commands are:

W command Name

0x05 CommandSendSoftwareVersionPart0

0x06 CommandSendSoftwareVersionPart1

0x0E CommandGetSetDeviceState

0x30 CommandReadRAMVar

0x31 CommandReadSetting

0x32 CommandWriteRAMVar

0x33 CommandWriteSetting

0x34 CommandWriteData

0x35 CommandGetSettingInfo

0x36 CommandGetRAMVarInfo

If an unsupported command is sent, the device will reply with an “Unknown command”

response:

Response: 0x80 <Reason> <XX>

<Reason> indicates why the command was unrecognised. If bit 0 is set, <Info0> was not

recognised. If bit 1 is set, <Info1> was not recognised. If both bits are clear, <W

command> was not recognised.

7.3.1 CommandSendSoftwareVersion

The software version of the target device is a 4-byte integer which can be requested with

CommandSendSoftwareVersionPart0 (low bytes) and

CommandSendSoftwareVersionPart1 (high bytes).

Command: 0x05/0x06 XX XX

Response: 0x82/0x83 <Lo(Part0/1)> <Hi(Part0/1)>

7.3.2 CommandGetSetDeviceState

This command is used to read the state of the device or to force the unit to go into a

specific state.

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 15 of 28

Command: 0x0E <State> XX

Response: 0x94 <State> <Sub-state>

Command
<State> Action

0 No state change, just inquire.

1 Force to Equalise. 1 hour 1, 2 or 4 V above absorption (12/24/48V). Charge

current is limited to ¼ of normal value. Will be followed by a normal 24-hour

float state.

2 Force to Absorption, for maximum absorption time. Will be followed by a

normal 24-hour float state.

3 Force to Float, for 24 hours.

Response

<State> State description Sub-state Sub-state description

0 Down 0

1 Startup 0

2 Off 0

3 Device in slave mode 0

4 Invert Full 0

5 Invert Half 0

6 Invert AES 0

7 Power Assist 0

8 Bypass 0

9 Charge 0 Charge Initializing

1 Charge Bulk

2 Charge Absorption

3 Charge Float

4 Charge Storage

5 Charge Repeated Absorption

6 Charge Forced Absorption

7 Charge Equalise

8 Charge Bulk stopped

Note: Switching the state might take some time so it is possible that the returned state

does not correspond directly with the requested state. However if state change is

possible it will take place within 1 second. So depending on the application a verify

might be needed.

If the requested state is not supported then an “Unknown command” response is sent.

Note: This command was introduced with firmware versions xxyy122 (xx= 19,20,26 or

27)

7.3.3 CommandReadRAMVar

This command can be used to read RAM variables. A list of RAM IDs can be found in

chapter 7.3.11. Not all devices support all variables, refer to CommandGetRAMVarInfo

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 16 of 28

for information on how to determine which variables are supported, and how to interpret

them.

Command: 0x30 <Lo(RAM ID)> <Hi(RAM ID)>

Response: 0x85/0x90 <Lo(Value)> <Hi(Value)>

0x85 = RamReadOK.

0x90 = Variable not supported (in which case <Value> is not valid).

7.3.4 CommandReadSetting

This command can be used to read device settings. A list of setting IDs can be found in

chapter 7.3.11. Not all devices support all settings, refer to CommandGetSettingInfo for

information on how to determine which settings are supported, and how to interpret

them.

Command: 0x31 <Lo(Setting ID)> <Hi(Setting ID)>

Response: 0x86/91 <Lo(Value)> <Hi(Value)>

<Value> is an unsigned 16-bit quantity.

0x86 = SettingReadOK.

0x91 = Setting not supported (in which case <Value> is not valid).

7.3.5 CommandWriteRAMVar

This command can be used to write RAM variables. A list of RAM IDs can be found in

chapter 7.3.11. Not all devices support all variables, refer to CommandGetRAMVarInfo

for information on how to determine which variables are supported, and how to

represent them.

Command: 0x32 <Lo(RAM ID)> <Hi(RAM ID)>

Response: None

This command must be followed by CommandWriteData.

7.3.6 CommandWriteSetting

This command can be used to write settings. A list of setting IDs can be found in

chapter 7.3.11. Not all devices support all settings, refer to CommandGetSettingInfo for

information on how to determine which settings are supported, and how to represent

them.

Command: 0x33 <Lo(Setting ID)> <Hi(Setting ID)>

Response: None

This command must be followed by CommandWriteData.

7.3.7 CommandWriteData

This command must be used in conjunction with either CommandWriteRAMVar or

CommandWriteSetting. This command sends the data to be written. The destination of

the data depends on the previous frame.

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 17 of 28

Command: 0x34 <Lo(Data)> <Hi(Data)>

Reply: 0x87/0x88 XX XX

0x87 = successful RAM write.

0x88 = successful setting write.

7.3.8 CommandGetSettingInfo

This command can be used to get information about which settings are supported, and

how to interpret them. A list of setting IDs can be found in chapter 7.3.11.

Command: 0x35 <Lo(Setting ID)> <Hi(Setting ID)>

Responses: 0x89 <Lo(Sc)> <Hi(Sc)>

 0x8A <Lo(Offset)> <Hi(Offset)>

 0x8B <Lo(Default)> <Hi(Default)>

 0x8C <Lo(Minimum)> <Hi(Minimum)>

 0x8D <Lo(Maximum)> <Hi(Maximum)>

<Sc> is a signed 16-bit value. If Sc = 0, this setting is not supported, and the remaining

responses are not transmitted.

The scaling factor (Scale) can be determined from Sc as follows:

If Sc > 0 then Scale := Sc

else Scale := 1 / (-Sc)

Note: The interpretation of Sc is different for RAM variables.

<Offset> is a signed 16-bit value.

The scale and offset are used to format the setting value. Assume x is the (16-bit) value

of a setting (requested with CommandReadSetting). The following formula is used to

determine the display value:

DisplayValue := Scale * (x + Offset)

<Default>, <Minimum>, <Maximum> are unsigned 16-bit values, represented in the same

format as the values returned by CommandReadSetting. To be meaningful for the end-

user these values must be formatted with Scale and Offset as above.

7.3.9 CommandGetRAMVarInfo

This command can be used to get information about which RAM variables are

supported, and how to interpret them. A list of RAM IDs can be found in chapter 7.3.11.

Command: 0x36 <Lo(RAM ID)> <Hi(ID)>

Responses: 0x8E <Lo(Sc)> <Hi(Sc)>

 0x8F <Lo(Offset)> <Lo(Offset)>

<Sc> is a signed 16-bit value. If Sc = 0, this RAM variable is not supported, and the

remaining response is not transmitted.

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 18 of 28

If Sc < 0 then the 16-bit value returned by CommandReadRAMVar is signed.

If Sc > 0 then the 16-bit value returned by CommandReadRAMVar is unsigned.

The scaling factor (Scale) can be determined from Sc as follows:

Scale := Abs(Sc)

If Scale ≥ 0x4000

Scale := 1 / (0x8000 – Scale)

Note: The interpretation of Sc is different for settings.

<Offset> is a signed 16-bit value.

The scale and offset are used to format the RAM variable. Assume x is the (16-bit)

value of a RAM variable (requested with CommandReadRAMVar). The following

formula is used to determine the display value:

DisplayValue := Scale * (x + Offset)

Note: x could either be a signed or unsigned value, depending on <Sc>.

Special case:

When <Offset> is 0x8000, the RAM variable is a bit. <Sc> is then set to the bit number

+ 1 in that case.

7.3.10 Units

Unless otherwise noted, values use the following units:

Type Unit

Voltage Volt

Current Ampere

Time Minute

7.3.11 Setting and Variable IDs

7.3.11.1 RAM variables

ID Function

0 UMainsRMS

1 IMainsRMS

2 UInverterRMS

3 IInverterRMS

4 UBat

5 IBat

6 UBatRMS (= RMS value of ripple voltage)

7 Inverter Period Time (time-base 0.1s)

8 Mains Period Time (time-base 0.1s)

9 Signed AC Load Current

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 19 of 28

10 Virtual switch position

11 Ignore AC input state

12 Multi functional relay state

13 Charge state (battery monitor function)

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 20 of 28

7.3.11.2 Settings

ID Function

0 Flags0 (see below)

1 Flags1 (see below)

2 UBatAbsorption

3 UBatFloat

4 IBatBulk

5 UInvSetpoint

6 IMainsLimit (AC1)

7 Repeated Absorption Time

8 Repeated Absorption Interval

9 (Maximum) Absorption duration

10 Charge characteristic

11 UBatLowLimit for Inverter

12 UBatLow hysteresis for Inverter

13 Number of slaves connected

14 Special three phase setting

0 = 3 phase

1 = Split phase 180

2= 2 leg 3 phase 120

15-43 Used for Virtual Switch (see Virtual switch settings below)

44 Lowest acceptable UMains

45 Hysteresis for parameter 44

46 Highest acceptable UMains

47 Hysteresis for parameter 46

48 Assist current boost factor

49 IMainsLimit (AC2)

50 Low current limit for switching to AES
e

51 Hysteresis on AES current limit
e
 (leave AES when current > Settings 50+51)

52-59 Used for Virtual Switch (see Virtual switch settings below)

60 Flags2 (see below)

61 Flags3 (see below)

62 Used for Virtual Switch (see Virtual switch settings below)

63 UBat low pre-alarm offset. Must be added to (UBatLowLimit +

UBatLowHysteresis) to determine the pre-alarm level. This offset can be

positive or negative. Since settings are only positive 0x8000 is added to the

value.

64 Battery capacity for battery monitor function.

65 For battery monitor function. Specifies the charge percentage to which battery

status is set when the charge state changes from Bulk to Absorption.

7.3.11.3 Flags

To determine which flags are supported by the device, the <Maximum> value returned by

CommandGetSettingInfo is used. In the case of the flag settings, <Maximum> is a bit

mask, where a bit will be set for each supported setting.

e
 The setting will become active after a reset of the Multi (off/on with the front switch or with a remote

panel which releases the Stand By signal).

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 21 of 28

Flags[0] is bit 0 in Flags0, Flags[31] is bit 15 in Flags1

Flags[n] Function

0 MultiPhaseSystem

1 MultiPhaseLeader

2 60Hz

3 Disable Wave Check (fast input voltage detection).

IMPORTANT: Keep flags[7] consistent.

4 DoNotStopAfter10HrBulk

5 AssistEnabled

6 DisableCharge

7 IMPORTANT: Must have inverted value of flags[3].

8 DisableAES

9 Not promoted option

10 Not promoted option

11 EnableReducedFloat

12 Not promoted option

13 Disable ground relay

14 Weak AC input

15 Remote overrules AC2

16-26 Virtual switch flags (see below)

27 Accept wide input frequency

28 Dynamic current limiter

29 Use tubular plate traction battery curve

30 Remote overrules AC1

31 Use Low Power Shutdown in AES instead of modified sinewave.

32-34 Virtual switch flags (see below)

35-63 Unused

Warning: do not change unused flags. The result may be unpredictable.

Warning: do not change ‘Not promoted options’. Changing these can damage the

device.

Warning: When changing flags, do not set bits for unsupported settings, as this can

cause the values of other flags to be changed.

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 22 of 28

7.3.11.4 Virtual switch settings

ID Name Detail

15 vsUsage 0: Not used; 1: Use VS to control Relay; 2: Use VS to

ignore AC input

16 vsonIInvHigh Level

17 vsonUBatHigh Level

18 vsonUBatLow Level

19 vstonIInvHigh Time

20 vstonUBatHigh Time

21 vstonUBatLow Time

22 vstonNotCharging Time

23 vstonFanOn Time

24 vstonTemperatureAlarm Time

25 vstonLowBatteryAlarm Time

26 vstonOverloadAlarm Time

27 vstonUBatRippleAlarm Time

28 vsoffIInvLow Level

29 vsoffUBatHigh Level

30 vsoffUBatLow Level

31 vstoffIInvLow Time

32 vstoffUBatHigh Time

33 vstoffUBatLow Time

34 vstoffCharging Time

35 vstoffFanOff Time

36 vstoffChargeBulkFinished Time

37 vstoffNoVSOnCondition Time

38 vstoffNoACInput Time

39 vstoffTemperatureAlarm Time

40 vstoffLowBatteryAlarm Time

41 vstoffOverloadAlarm Time

42 vstoffUBatRippleAlarm Time

43 vsMinimumOnTime Time; will not influence Off conditions with time set

to 0

52 vs2onILoadHigh Level

53 vs2onILoadHigh Time

54 vs2onUBatLow Level

55 vs2onUBatLow Time

56 vs2offILoadLow Level

57 vs2offILoadLow Time

58 vs2offUBatHigh Level

If high byte is 0 then if:

low byte=0 Condition is “When Bulk finished”

low byte=1 Condition is “When Abs. finished”

59 vs2offUBatHigh Time

62 vsInverterPeriodTime

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 23 of 28

7.3.11.5 Virtual switch flags

Flags[n] Name Detail

16 vsonBulkProtection

17 vsonTemperaturePreAlarm

18 vsonLowBatteryPreAlarm

19 vsonOverloadPreAlarm

20 vsonUBatRipplePreAlarm

21 vsoffTemperaturePreAlarm

22 vsoffLowBatteryPreAlarm

23 vsoffOverloadPreAlarm

24 vsoffUBatRipplePreAlarm

25 vsonWhenGeneralFailure

26 vsInvert When on: When a VS On condition is met, the

relay is deactivated, or AC input is NOT

ignored.

32 vs2offWhenAC1Available

33 vs2Invert

34 vsSetInverterPeriodTime

The names are closely related to the function. For example, vstonUBatHigh means the

time UBat must be above vsonUBatHigh before VS is considered on.

Note: On conditions have priority over off conditions.

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 24 of 28

Appendix 1 Simple example of common tasks

Here are some sample messages for performing common tasks. Messages to the MK2

are shown in green, messages from the MK2 are shown in blue. Parentheses are used

to group data bytes belonging to the same message field. Where the value of a byte

depends on the connected device/running state it is shown as XX. Where the whole

message is known, the checksum has been calculated; otherwise it is shown as

<Checksum>. ‘Quoted’ bytes are ASCII representations all other values are hexadecimal

representations.

Instruct the MK2 to communicate with the VE.Bus device at address 0
04 FF ‘A’ 01 00 BB

05 FF ‘A’ 01 00 00f BA

Read the software version of the target
05 FF ‘W’ 05 (00 00) A0

06 FF ‘W’ 81 (XX XX) 00f <Checksum>

05 FF ‘W’ 06 (00 00) 9F

06 FF ‘W’ 82 (XX XX) 00f <Checksum>

Request the scale and offset information of the DC voltage
05 FF ‘W’ 36 (04 00) 6B

09 FF ‘W’ 8E (XX XX) 8F (XX XX) <Checksum>

Request the State of Charge value
05 FF ‘W’ 30 0D 00 68

05 FF ‘W’ 85 (XX XX)[DD DD]g <Checksum>

Request the DC info frame
03 FF ‘F’ 00 B8

0F 20 (XX XX XX XX) 0C (XX XX) (XX XX XX) (XX XX XX) XX <Checksum>

Request the LED status
02 FF ‘L’ B3

05 FF ‘L’ XX XX 00f <Checksum>

Instruct the MK2 to act as a remote panel - switch on, input current limit 12A (of 16A

max.) using variant 1 (sending potvalue and scale)
07 FF ‘S’ 03 C0 10 01 01 D2

02 FF ‘S’ AC

Send single remote panel command - switch on, input current limit 31.5A using variant

2 (sending absolute current limit)
07 FF ‘S’ 03 3B 01 01 80 E7

02 FF ‘S’ AC

Instruct the MK2 to append LED status to all frames
07 FF ‘S’ XX XX XX 01 02 <Checksum>

84 FF ‘S’ XX XX <Checksum>

f
 MK2 versions 1130128 and up do not send this 0x00

g
 Newer VE.Bus products add the [DD DD] this can be ignored see also note in §3.2

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 25 of 28

Appendix 2 Annotated example for typical UI

Note: checksums are not shown in the dump!

First make sure that the MK2 is connected

00.276 INF.mk2: Getting version

00.338 INF.: > 02 FF V

00.401 INF.: < 07 FF V 93 3E 11 00 00

00.401 INF.task: version frame received

In order to obtain the scaling a valid device must be selected, in a properly configured

system, address 0 will always be used, set that:

00.401 INF.mk2: setting address: 00

00.448 INF.: > 04 FF A 01 00

00.510 INF.: < 04 FF A 01 00

Get the ram scaling needed to intepreted the values from the device.

00.557 INF.: > 05 FF W 36 00 00

00.650 INF.: < 08 FF W 8E 9C 7F 8F 00 00

00.650 INF.winmon: ram info scale=32668 offset=0

00.650 INF.init: scale for 0 = 0.010000

00.697 INF.: > 05 FF W 36 01 00

00.806 INF.: < 08 FF W 8E 9C 7F 8F 00 00

00.806 INF.winmon: ram info scale=32668 offset=0

00.806 INF.init: scale for 1 = 0.010000

00.884 INF.: > 05 FF W 36 02 00

00.978 INF.: < 08 FF W 8E 9C 7F 8F 00 00

00.978 INF.winmon: ram info scale=32668 offset=0

00.978 INF.init: scale for 2 = 0.010000

01.056 INF.: > 05 FF W 36 03 00

01.165 INF.: < 08 FF W 8E 9C 7F 8F 00 00

01.165 INF.winmon: ram info scale=32668 offset=0

01.165 INF.init: scale for 3 = 0.010000

01.212 INF.: > 05 FF W 36 04 00

01.306 INF.: < 08 FF W 8E 9C 7F 8F 00 00

01.306 INF.winmon: ram info scale=32668 offset=0

01.306 INF.init: scale for 4 = 0.010000

01.352 INF.: > 05 FF W 36 05 00

01.446 INF.: < 08 FF W 8E 64 80 8F 00 00

01.446 INF.winmon: ram info scale=-32668 offset=0

01.446 INF.init: scale for 5 = 0.010000

01.508 INF.: > 05 FF W 36 06 00

01.602 INF.: < 08 FF W 8E 9C 7F 8F 00 00

01.602 INF.winmon: ram info scale=32668 offset=0

01.602 INF.init: scale for 6 = 0.010000

01.664 INF.: > 05 FF W 36 07 00

01.758 INF.: < 08 FF W 8E 57 78 8F 00 01

01.758 INF.winmon: ram info scale=30807 offset=256

01.758 INF.init: scale for 7 = 0.000510

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 26 of 28

01.820 INF.: > 05 FF W 36 08 00

01.914 INF.: < 08 FF W 8E 2F 7C 8F 00 00

01.914 INF.winmon: ram info scale=31791 offset=0

01.914 INF.init: scale for 8 = 0.001024

01.961 INF.: > 05 FF W 36 09 00

02.054 INF.: < 08 FF W 8E 64 80 8F 00 00

02.054 INF.winmon: ram info scale=-32668 offset=0

02.054 INF.init: scale for 9 = 0.010000

02.117 INF.: > 05 FF W 36 0A 00

02.195 INF.: < 08 FF W 8E 04 00 8F 00 80

02.195 INF.winmon: ram info scale=4 offset=-32768

02.195 INF.init: 10 is a bit field, bit 3

02.382 INF.: > 05 FF W 36 0B 00

02.460 INF.: < 08 FF W 8E 01 00 8F 00 80

02.460 INF.winmon: ram info scale=1 offset=-32768

02.460 INF.init: 11 is a bit field, bit 0

02.491 INF.: > 05 FF W 36 0C 00

02.600 INF.: < 08 FF W 8E 06 00 8F 00 80

02.600 INF.winmon: ram info scale=6 offset=-32768

02.600 INF.init: 12 is a bit field, bit 5

02.647 INF.: > 05 FF W 36 0D 00

02.741 INF.: < 08 FF W 8E 38 7F 8F 00 00

02.741 INF.winmon: ram info scale=32568 offset=0

02.741 INF.init: scale for 13 = 0.005000

02.741 INF.vebus_startup: settings scale obtained

==== Current limit + active input ====

Get the current limit info, these have fixed units of 0.1A.

02.788 INF.: > 03 FF F 05

03.193 INF.: < 0C 41 10 09 00 00 00 3E 00 E8 03 F4 01

03.193 INF.ac-in-config: active input: 0

03.193 INF.ac-in-config: raw current limit 500 [62 - 1000]

03.193 INF.mk2-values: ac in limit: 50.0A [6.2A .. 100.0A]

==== DC values + inverter frequency ====

AC values need to be scaled with the scales obtained above:

out->V = mk2UnpackRamFloat(raw->V, &dev->ramInfo[WM_VAR_UBAT]);

out->I = mk2UnpackRamFloat(raw->chargerI, &dev->ramInfo[WM_VAR_IBAT]);

out->I -= mk2UnpackRamFloat(raw->inverterI, &dev->ramInfo[WM_VAR_IBAT]);

/* convert period to frequency in Hz */

out->frequency = mk2UnpackRamFloat(raw->period, &dev-

>ramInfo[WM_VAR_INVERTER_PERIOD_TIME]);

if (out->frequency)

 out->frequency = 10 / out->frequency;

03.349 INF.: > 03 FF F 00

03.474 INF.: < 0F 20 7F 9A 81 79 0C 51 0A 00 00 00 00 00 00 88

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 27 of 28

03.474 INF.mk2-values: dc V: 26.4 V

03.474 INF.mk2-values: dc I: 0.0 A

03.474 INF.mk2-values: output frequency 50.0 Hz

==== AC values ====

AC values need to be scaled with the scales obtained above and multiplied by

the factors inside the message:

out->inputV = mk2UnpackRamFloat(raw->inputV, &dev-

>ramInfo[WM_VAR_UMAINS_RMS]);

out->inputI = mk2UnpackRamFloat(raw->inputI, &dev-

>ramInfo[WM_VAR_IMAINS_RMS]) * raw->backfeedFactor;

out->inverterV = mk2UnpackRamFloat(raw->inverterV, &dev-

>ramInfo[WM_VAR_UINVERTER_RMS]);

out->inverterI = mk2UnpackRamFloat(raw->inverterI, &dev-

>ramInfo[WM_VAR_IINVERTER_RMS]) * raw->inverterFactor;

/* convert period to frequency in Hz */

out->frequence = mk2UnpackRamFloat(raw->inputPeriod, &dev-

>ramInfo[WM_VAR_MAINS_PERIOD_TIME]);

if (out->frequence)

 out->frequence = 10 / out->frequence;

03.568 INF.: > 03 FF F 01

03.692 INF.: < 0F 20 01 01 81 79 08 37 53 49 00 37 53 27 00 C3

03.692 INF.mk2-values: input V: 213.0 V

03.692 INF.mk2-values: input I: 0.7 A

03.692 INF.mk2-values: inverter voltage 213.0 V

03.692 INF.mk2-values: inverter current 0.4 A

03.692 INF.mk2-values: input period 50.1 Hz

Interfacing with VE Bus products - MK2 Protocol 3.12.doc Page 28 of 28

Appendix 3 Revision history

Version Date Changes
1 14 Nov 2007 Document created.

1.1 11 Feb 2008 Revised descriptions for the message format, and the ‘A’, ‘L’, and

‘S’ commands.

Added a section on identifying the protocol in use.

Added details of the ‘F’ command.

1.2 16 May 2008 Added details of ‘W’ response concatenation.

1.3 03 July 2008 Added a note about not ending frames with 0xFF.

Corrected the description of how the shore current set point is

interpreted when the panel scale is set to 255.

1.4 10 July 2008 Added more detail to the description of the info frame response.

1.5 16 July 2008 Added more detail for the MasterMultiLED frame description.

1.6 2 October 2008 Added information on receiving panel frames.

1.7 9 October 2008 Added more detail to the panel frame description.

1.8 26 March 2009 Added example messages.

1.9 20 May 2009 Corrected the DC info example.

Re-formatted the examples to reduce endian ambiguity.

2.0 14 September 2009 Deleted “bits” numbered 8-10 in the table describing the

<AC Input Configuration> byte of the MasterMultiLED frame.

3.0 04 November 2009 Merged with “VE - interfacing with the Phoenix product range”.

Added an example showing the format of frames with appended

LED status.

3.1 05 July 2011 Corrected checksum of first example in Appendix 1

Changed footnotes to end notes.

Added endnote a)

3.2 18 August 2011 Changed part about zero padding in paragraph 3.2

Inserted paragraph 3.3

3.3 29 August 2011 Changed paragraph 3.4. Explained the <mode> field in more detail.

3.4 28 February 2012 Added DTR info to paragraph 3.1

3.5

3.6

3.7

19 March 2012

26 March 2012

18 October 2012

Corrected “Request the DC info frame” example.

Added information on MK2 Jumpers, paragraph 3.5

Added information on MK2 powerup sequence

Added Appendix 2, Annotated example for typical UI

Added note on MK2 firmware 1130132 to chapter 2

Made aware of 26yyzzz and 27yyzzz firmwares

3.8 14 December 2012 Changed chapter 5, added variant 2for sending input current limit,

added some notes on input current.

Changed ‘shore current’ to ‘input current’ throughout the document.

3.9 13 March 2014 Corrected an erroneous hyperlink (which inserted a complete

paragraph in a table)

changed Endnotes to Footnotes

3.10 27 January 2015 Added link to data communication whitepaper in the introduction

Added instruction in chapter 3 to always make sure the MK2 has the

latest firmware in the introduction.

Added ‘MK2 protocol’ to the document name.

3.11 17 April 2015 Added last bullet in the final notes in §3.2

Added ‘Request the State of Charge value’ example.

3.12 19 February 2016 Remarks about zero padding are now ‘strikethrough’.

Updating to latest MK2 firmware suggested and explained.

